

Journal of Organometallic Chemistry 579 (1999) 332-337

Reactions of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ with CuBr in CHCl₃: isolation and structures of an octanuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu]_4$ and a trinuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$

Jian-Ping Lang, Kazuyuki Tatsumi *

Research Center for Materials Science, and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Received 2 December 1998; received in revised form 6 January 1999

Abstract

Reaction of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ with two equivalents of CuBr in CHCl₃ produced an intriguing octanuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu]_4$ (1) in 80% yield. When this reaction was carried out in the presence of excess PPh₃, a trinuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$ (2) was isolated in 87% yield. Both 1 and 2 were characterized fully. In the structure of 1, four $[(\eta^5-C_5Me_5)WS_3]$ fragments are linked by Cu atoms through interactions with μ_2 -S and μ_3 -S bridges, forming an unusual square W_4Cu_4 core with an approximate S_4 symmetry, while 2 consists of an incomplete cubane $[WS_3Cu_2Br]$ core. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Tungsten complex; Copper complex; Sulfide; Cluster

1. Introduction

In the past 2 decades, chemistry of transition metal chalcogenide clusters [1-7], especially those derived from thiomolybdates and thiotungstates, has been developed due to their relevance to biological systems [8-10], catalysis [11-13], and photonic materials [14-16]. It is known that selection of suitable solvents is critically important for the preparation of specific chalcogenide cluster complexes. In some cases, a given reaction system may produce different compounds depending on the choice of the solvent [17-20]. For instance, the reaction of [NiCl₂(PPh₃)₂] with two equivalents of (Me₃Si)₂Se in toluene was reported to give a neutral cluster [Ni₃₄Se₂₂(PPh₃)₁₀] [17], while in acetonitrile it led to isolation of an anionic cluster $[Ni_{12}Se_{11}Cl(PPh_3)_8][NiCl_3(PPh_3)]_2$ [18]. We have interested in construction of heterometallic clusters based on

the organometallic trisulfido complex anions, $[(\eta^5 C_5Me_5MS_3^{n-}$ (M=Nb, Ta (n = 2) [21,22]; M=W, Mo (n=1) [23,24]) [25-30]. Recently we communicated that the reaction of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ with CuBr in CH₃CN produced a double incomplete-cubane cluster [PPh₄]₂[(η⁵-C₅Me₅)WS₃Cu₃Br₃]₂ [26], which in turn reacted with excess PPh₃ to yield a tetranuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu_3Br_2(PPh_3)_2]$ [29]. Re-examination of the above reaction in CHCl₃ resulted in isolation of an unusual octanuclear neutral cluster [(n⁵- $C_5Me_5WS_3Cu_{4}$ (1). When an excess amount of PPh₃ was added to the reaction system in CHCl₃, a neutral trinuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$ (2) was generated. Herein, we report the syntheses and structural characterization of these two new clusters.

2. Results and discussion

When two equivalents of CuBr were added to a red solution of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ in CHCl₃, the color

^{*} Corresponding author.

turned dark red immediately. The solution was stirred at room temperature overnight and then concentrated. By layering Et₂O onto the concentrated solution, $[(\eta^{5} C_5Me_5WS_3Cu_4$ (1) was isolated as dark red crystals in 80% yield. The formation of the octanuclear cluster 1 contrasts to the analogous reaction carried out in CH₃CN, which gave a double incomplete-cubane cluster $[PPh_4]_2[(\eta^5-C_5Me_5)WS_3Cu_3Br_3]_2$ [26]. The remarkable difference in products between the two reactions may be ascribed to different solubility in CHCl₃ and CH₃CN. Compound 1 is very soluble in CHCl₃, CH₂Cl₂, and toluene, while it is nearly insoluble in contrary, On the $[PPh_4]_2[(\eta^5 -$ CH₃CN. C₅Me₅)WS₃Cu₃Br₃]₂ does not dissolve in CHCl₃, CH₂Cl₂, and toluene, but dissolves readily in CH₃CN. An interesting facet of the reaction in CHCl₃ is that, the bromine atom of CuBr is removed completely, while for the reaction in CH₃CN, the CuBr unit is intact. Complete loss of halide or pseudohalide of M'X (M' = Cu(I), Ag(I); X = Cl, Br, I, CN, NCS) is rare in the cluster forming reactions with $[MO_{4-n}S_n]^{2-}$ (M = Mo, W; $n = 1 \sim 4$). The single example is the formation of an anionic icosanuclear cluster $[Bu_4^nN]_4[(MoS_4)_8Cu_{12}]$ [31], which was prepared from the solid sate reaction of (NH₄)₂[MoS₄] with CuCN and Bu₄ⁿNBr at 90°C. In this case, all the cyanide groups of CuCN are lost during the reaction. On the other hand, treatment of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ in CHCl₃ with two equivalents of CuBr followed by addition of excess PPh₃ afforded a neutral trinuclear cluster $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$ (2) in 83% yield. Again, this product is different from

the tetranuclear neutral cluster $[(\eta^5 - C_5Me_5)WS_3Cu_3Br_2(PPh_3)_2]$ which was isolated from the analogous reaction carried out in CH₃CN [29] (Scheme 1).

Both 1 and 2 are stable toward oxygen and moisture, and 2 is again soluble in CHCl₃, CH₂Cl₂, and toluene, but is only slightly soluble in CH₃CN. As the electronic spectrum of [PPh₄][(η⁵-C₅Me₅)WS₃] in CHCl₃ features a strong absorption band at 381 nm, the bands at 421 (1) and 391 (2) nm observed in the spectra of 1 and 2 in CHCl₃ are probably originated from sulfur-to-tungsten charge-transfer transitions of the $(\eta^5-C_5Me_5)WS_3$ moiety. The ¹H-NMR spectrum of 1 in CDCl₃ shows a single η^5 -C₅Me₅ signal at 2.13 ppm, while that of **2** in CD_2Cl_2 consists of a singlet at 1.97 ppm for η^5 -C₅Me₅ and multiplets in the 7.36–7.68 ppm region for PPh₃. In the ³¹P {¹H}-NMR spectrum of **2** in CD_2Cl_2 , the signal at 9.54 ($w_{1/2} = 154$ Hz) is broadened slightly, probably due to couplings between the ³¹P and ⁶³Cu(⁶⁵Cu) nuclei. The FT-IR spectra of 1 and 2 display bands arising from the W–S_{br} stretching vibrations at 454/435/405 (1) and 430/405 (2) cm⁻¹, respectively.

The molecular structure of **1** is shown in Fig. 1 and the selected bond distances and angles are given in Table 1. The molecule is composed of four (η^5 -C₅Me₅)WS₃ units connected by four Cu atoms, forming a 'four-flier pin-wheel' structure with an approximate S_4 symmetry. The W₄Cu₄ core structure resembles those of [Et₄N]₄[MOS₃Cu]₄ (M=Mo, W) [32], in which four [MOS₃]²⁻ moieties are linked by four Cu atoms via sulfur bridges. Within the W₄Cu₄ cluster core of 1, the

Scheme 1.

Fig. 1. Molecular structure of $[(\eta^5-C_5Me_5)WS_3Cu]_4$ (1), with 50% thermal ellipsoids. Hydrogen atoms are omitted for clarity

four W and four Cu atoms are coplanar, with the maximum deviation from the least-squares plane being 0.3 Å. Each copper atom moves inward from the midpoint of each edge of the W4 square, and the average W-Cu-W angle is 172°. The η^5 -C₅Me₅ groups are situated alternatively above and below the W₄Cu₄ mean plane, and so are the bridging sulfur atoms. Each of the four $[(\eta^5-C_5Me_5)WS_3]$ units adopts a slightly distorted three-legged piano-stool structure, and the S₃ plane parallels to the η^5 -C₅Me₅ ring (dihedral angle = $0.76 \sim 1.97^{\circ}$). The average W- μ_3 -S and W- μ_2 -S bond lengths, 2.287 and 2.213 Å, are comparable to those of $[PPh_4][{(\eta^5 C_5Me_5WS_3Cu_2$ ₃ S_2] ((W- μ_3 -S)_{av} = 2.292 Å, (W- μ_2 - $S_{av} = 2.232$ Å) [28]. The mean W–Cu bond length of 2.751 Å, which is similar to that of [Et₄N]₄[WOS₃Cu]₄ (2.747 Å) and is slightly longer than those of $[PPh_4][\{(\eta^5-C_5Me_5)WS_3Cu_2\}_3S_2]$ (2.678 Å) [28] and $[PPh_4]_2[(\eta^5-C_5Me_5)WS_3Cu_3Br_3]_2$ (2.660 Å) [26], suggests the presence of weak metal-metal interactions between d¹⁰ Cu^I and d⁰ W^{VI}. All the Cu atoms adopt a tetrahedral geometry coordinated by two μ_2 -S and two μ_3 -S atoms. The mean Cu-S bond length of 2.290 Å is normal, being similar to those of $[PPh_4][{(\eta^5-C_5Me_5)WS_3Cu_2}_3S_2]$ (2.222)Å) and $[PPh_4]_2[(\eta^5-C_5Me_5)WS_3Cu_3Br_3]_2$ (2.230 Å). Interestingly, the average $Cu-(\mu_3-S)-Cu$ bond angle (104°) is somewhat smaller than that of [Et₄N]₄[WOS₃Cu]₄ (112°). The cavity of the tetrahedral hollow site at the center of the molecule is small, where the distances between the μ_3 -S atoms are in the range from 3.77 to 3.90 Å.

The molecular structure of 2 is shown in Fig. 2, and the selected bond lengths and angles are listed in Table 2. The structure of 2 is very close to that of

Table 1 Bond distances (Å) and angles (°) for $[(\eta^5 - C_5 Me_5)WS_3Cu]_4$ (1)

W(1)–Cu(1)	2.750(3)	W(1)–Cu(4)	2.754(3)
W(2)-Cu(1)	2.745(3)	W(2)-Cu(2)	2.745(3)
W(3)–Cu(2)	2.742(3)	W(3)–Cu(3)	2.753(3)
W(4)-Cu(3)	2.761(3)	W(4)-Cu(4)	2.758(3)
W(1)–S(1)	2.191(7)	W(1) - S(2)	2.297(6)
W(1)–S(3)	2.218(6)	W(2)–S(4)	2.205(7)
W(2)–S(5)	2.300(7)	W(2)–S(6)	2.227(7)
W(3)–S(7)	2.211(6)	W(3)–S(8)	2.270(6)
W(3)–S(9)	2.206(8)	W(4)-S(10)	2.227(7)
W(4)-S(11)	2.282(5)	W(4)-S(12)	2.221(6)
Cu(1)–S(2)	2.292(6)	Cu(1)–S(3)	2.292(7)
Cu(1)–S(4)	2.304(8)	Cu(1)–S(5)	2.279(7)
Cu(2)–S(5)	2.271(7)	Cu(2)–S(6)	2.313(8)
Cu(2)–S(7)	2.294(7)	Cu(2)–S(8)	2.274(6)
Cu(3)–S(8)	2.273(7)	Cu(3)–S(9)	2.294(7)
Cu(3)–S(10)	2.314(7)	Cu(3)–S(11)	2.274(7)
Cu(4)–S(1)	2.311(7)	Cu(4)–S(2)	2.265(7)
Cu(4)–S(11)	2.289(6)	Cu(4)–S(12)	2.305(7)
$S(2)\Lambda S(5)$	3.90	$S(2)\Lambda S(8)$	3.77
$S(2)\Lambda S(11)$	3.88	$S(5)\Lambda S(8)$	3.82
$S(5)\Lambda S(11)$	3.76	S(8)ΛS(11)	3.86
Cu(1)-W(1)-Cu(4)	80.89(9)	Cu(1)-W(2)-Cu(2)	81.52(9)
Cu(2)–W(3)–Cu(3)	82.27(9)	Cu(3)-W(4)-Cu(4)	80.70(9)
S(1)-W(1)-S(2)	106.6(2)	S(1)-W(1)-S(3)	103.2(3)
S(2)–W(1)–S(3)	106.7(2)	S(4)-W(2)-S(5)	107.0(2)
S(4)-W(2)-S(6)	103.2(3)	S(5)-W(2)-S(6)	106.9(2)
S(7)–W(3)–S(8)	106.8(2)	S(7)-W(3)-S(9)	103.5(3)
S(8)-W(3)-S(9)	106.4(2)	S(10)-W(4)-S(11)	106.5(2)
S(10)-W(4)-S(12)	103.6(3)	S(11)-W(4)-S(12)	106.8(2)
W(1)-Cu(1)-W(2)	170.3(1)	W(2)-Cu(2)-W(3)	173.6(1)
W(3)-Cu(3)-W(4)	171.5(1)	W(1)-Cu(4)-W(4)	171.4(1)
Cu(1)-S(2)-Cu(4)	103.2(3)	Cu(1)–S(5)–Cu(2)	103.9(3)
Cu(2)–S(8)–Cu(3)	105.3(3)	Cu(3)–S(11)–Cu(4)	103.1(3)

silver analogue which we reported earlier [27]. The $W-\mu_2-S$ (2.224 Å) and $W-\mu_3-S$ (2.296 Å) bond lengths are similar to the corresponding distances of 1 $[(\mu^{5}-C_{5}Me_{5})WS_{3}Ag_{2}Br(PPh_{3})_{2}]$ $((W-\mu_{2}-S)_{av} =$ and 2.213 Å, $W-\mu_3-S = 2.275$ Å) [27], while the mean W-Cu bond of 2.704 Å is shortened slightly compared with that of 1. Each Cu atom is bound to μ_2 -Br, P(PPh₃), μ_2 -S, and one μ_3 -S, forming a distorted tetrahedral coordination geometry. It is interesting to compare the structure of 2 with that of $[(\eta^5-C_5Me_5)WS_3Cu_3Br_2(PPh_3)_2]$ [29]. Formally, the latter structure is made by addition of one CuBr group to the cluster framework of 2, forming an open WS₃Cu₃Br cube where one Cu-Br bond is broken. Like in $[(\eta^5-C_5Me_5)WS_3Cu_3Br_2(PPh_3)_2]$, the bridging Br atom in 2 moves out of the triangular face of Cu(1), S(1) and Cu(2). The bond angle, Cu(1)–(μ_2 -Br)-Cu(2) (66°), is more acute than that of $[(\eta^5 C_5Me_5$)WS₃Cu₃Br₂(PPh₃)₂] (68°). The mean Cu- μ_2 -Br length (2.640 Å) within this linkage is similar to that of $[(\eta^5-C_5Me_5)WS_3Cu_3Br_2(PPh_3)_2]$ (2.646 Å), but is much longer than those of $[Et_4N]_2[Cu_2Br_4]$ (2.448 Å) [33] and $[Pr_4^nN]_4[Cu_4Br_6]$ (2.398 Å) [34].

Fig. 2. Molecular structure of $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$ (2), with 50% thermal ellipsoids. Hydrogen atoms are omitted for clarity

3. Experimental

3.1. General

All manipulations were carried out under argon using standard Schlenk techniques. All solvents were predried over activated molecular sieves and refluxed over the appropriate drying agents under argon. ¹H-NMR spectra were recorded at an ambient temperature on a Varian UNITYplus-500 spectrometer. ¹H-NMR chemical shifts were referenced to the CDCl₃ or CD₂Cl₂ signal, and the ${}^{31}P{}^{1}H$ -NMR chemical shift for 2 was relative to 85% H₃PO₄. FT-IR spectra in the range 4000-400 cm⁻¹ were recorded on a Perkin-Elmer 2000 FT-IR spectrophotometer using KBr discs. UVvis spectra were measured on a JASCO V-560 spectrophotometer. The elemental analyses for C, H, and S were performed on a LECO-CHNS microanalyzer, using the samples dried in vacuo for a prolonged period in order to remove crystal solvents.

Table 2

Selected bond distances (Å) and angles (°) for $[(\eta^5-C_5Me_5)WS_3Cu_2Br(PPh_3)_2]$ (2)

W–Cu(1)	2.706(1)	W–Cu(2)	2.701(1)
W-S(1)	2.296(2)	W-S(2)	2.226(2)
W–S(3)	2.223(3)	Cu(1) - S(1)	2.281(3)
Cu(1) - S(2)	2.255(3)	Cu(2)-S(1)	2.281(3)
Cu(2)–S(3)	2.259(3)	Cu(1)–Br	2.668(2)
Cu(2)–Br	2.612(2)	Cu(1)–P(1)	2.217(3)
Cu(2)–P(2)	2.215(3)		
S(1)–W–S(2)	105.18(9)	S(1)-W-S(3)	105.53(9)
S(2)–W–S(3)	104.71(10)	Cu(1)-W-Cu(2)	64.18(4)
S(1)-Cu(1)-S(2)	104.75(1)	S(1)-Cu(2)-S(3)	104.83(9)
W-S(1)-Cu(1)	72.48(7)	W-S(1)-Cu(2)	72.35(8)
W-S(2)-Cu(1)	72.48(7)	W-S(3)-Cu(2)	72.35(8)
Cu(1)-S(1)-Cu(2)	78.05(8)	Cu(1)– Br – $Cu(2)$	65.90(4)
Br-Cu(1)-S(1)	102.07(8)	Br-Cu(1)-S(2)	108.99(9)
Br-Cu(2)-S(3)	108.90(8)	Br–Cu(2)–S(1)	103.83(8)

3.2. Syntheses

3.2.1. $[(\eta^{5}-C_{5}Me_{5})WS_{3}Cu]_{4}$ (1)

To a red solution of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ (0.13 g, 0.17 mmol) in CHCl₃ (25 cm³) was added CuBr (0.050 g, 0.34 mmol). The solution became dark red within minutes and was allowed to stir at room temperature overnight. After the solution was concentrated to ca. 3 cm³ in vacuo and filtered. The filtrate was layered with Et₂O (6 cm³) to produce dark red prisms of 1·2CHCl₃ in 4 days, which were collected by filtration, washed with CHCl₃/Et₂O (1:4), and dried in vacuo. Yield: 0.065 g, 79.9% (Found: C, 25.24; H, 3.15; S, 19.48. C₄₀H₆₀Cu₄S₁₂W₄ requires C, 25.08; H, 3.16; S, 20.09%). ¹H-NMR (500 MHz, CDCl₃): d 2.21 (60H, s, η^5 -C₅Me₅). IR ($\tilde{\nu}$ cm⁻¹): 1375 (s), 1109 (w), 1022 (s), 804 (w), 454 (m), 435 (s), 405 (w) cm⁻¹. UV-vis (CHCl₃) (λ_{max}/nm (ϵ/M^{-1} cm⁻¹)): 421 (17300).

3.2.2. $[(\eta^{5}-C_{5}Me_{5})WS_{3}Cu_{2}Br(PPh_{3})_{2}]$ (2)

To a red solution of $[PPh_4][(\eta^5-C_5Me_5)WS_3]$ (0.12 g, 0.16 mmol) in CHCl₃ (30 cm³) was added CuBr (0.05 g, 0.32 mmol) with stirring. After 24 h, PPh₃ (0.25 g, 0.96 mmol) was added to the solution and stirred for another 1 h. The solution was then concentrated to ca. 3 cm³ in vacuo and layered by diethyl ether (6 cm³). Dark red prisms of $2 \cdot 2 \text{CHCl}_3$ were formed after 2 days, which were collected by filtration, washed with CHCl₃/ Et₂O (1:4), and dried in vacuo. Yield: 0.16 g (87.2%) (Found: C, 48.32; H, 3.91; S, 8.89. C₄₆H₄₅BrCu₂P₂S₃W requires C, 48.17; H, 3.96; S, 8.39%). ¹H-NMR (500 MHz, CD₂Cl₂): d 7.36-7.68 (30H, m, PPh₃), 1.97 (15H, s, η^{5} -C₅Me₅). ³¹P{¹H}-NMR (500 MHz, CD₂Cl₂): d 9.54 (br s, $w_{1/2} = 154$ Hz). IR (\tilde{v} cm⁻¹): 1480 (s), 1436 (vs), 1374 (m), 1183 (w), 1096 (s), 1027 (m), 745 (s), 694 (vs), 521 (vs), 430 (m), 405 (w) cm⁻¹. UV-vis (CHCl₃) $(\lambda_{max}/nm \ (\epsilon/M^{-1} \ cm^{-1}))$: 391 (9400).

3.3. X-ray crystallography

X-ray quality crystals of 1.2CHCl₃ and 2.2CHCl₃ were obtained by recrystallization from CHCl₃/Et₂O. Diffraction data were collected on a Rigaku AFC7R diffractometer at ambient temperature by using graphite-monochromatized Mo- K_{α} radiation (0.71079 Å). A dark red single crystal of 1.2CHCl₃ with dimensions $0.25 \times 0.40 \times 0.30$ mm was sealed in a capillary under argon, while a dark red single crystal of 2.2CHCl₃ with dimensions $0.45 \times 0.35 \times 0.30$ mm was mounted on the top of a glass fiber. Cell constants and an orientation matrix for data collection were obtained from least-squares refinements using the setting angles of 23° (1·2CHCl₃) and 25° (2·2CHCl₃) carefully centered reflections in the range $29.75^{\circ} < 2\theta < 31.37^{\circ}$ for 1.2CHCl₃ and $22.33^{\circ} < 2\theta < 24.81^{\circ}$ for 2.2CHCl₃. The intensities of three representative reflections monitored

Table 3					
Crystallographic	data	for	$1 \cdot 2 CHCl_3$	and	$2 \cdot 2 \text{CHCl}_3$

	$1 \cdot 2 \text{CHCl}_3$	$2 \cdot 2 \text{CHCl}_3$
Empirical formula	C42H62Cl6Cu4S12W4	C48H47BrCl6Cu2P2S3W
$M_{ m r}$	2153.97	1385.59
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/c$ (No. 14)	<i>P</i> 1 (No. 2)
a (Å)	17.035(6)	14.644(6)
b (Å)	14.014(6)	19.068(8)
c (Å)	26.507(8)	10.620(5)
α (°)	-	102.41(4)
β (°)	94.62(3)	103.01(3)
γ (°)	-	102.16(4)
$V(Å^3)$	6319(3)	2715(2)
Ζ	4	2
λ (Mo–K _{α}) (Å)	0.71069	0.71069
$D_{\rm c} ~({\rm g}~{\rm cm}^{-3})$	2.264	1.695
$\mu ({\rm cm}^{-1})$	92.55	41.31
$2\theta_{\rm max}$ (°)	45.0	50.0
No. reflections collected	9016	10202
No. independent reflections	8673	9585
No. observed reflections $(I > 3.00 \sigma(I))$	4614	7227
No. parameters refined	373	544
R ^a	0.058	0.049
R_w^{b}	0.068	0.065
GOF ^c	1.91	1.98
$\Delta \rho_{\rm max}$ (e Å ⁻³)	2.83	2.64
$\Delta \rho_{\rm min}$ (e Å ⁻³)	-0.89	-2.66

^a $R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$

^b $R_w = \{\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2\}^{1/2}.$

^c GOF = $\{\Sigma w(|F_o| - |F_c|)^2/(M-N)\}^{1/2}$, where M = number of reflections and N = number of parameters.

every 150 reflections showed no sign of significant decay. An empirical absorption correction using the ψ scan technique was applied, which resulted in transmission factors ranging from 0.38 to 1.00 for 1.2CHCl₃ and from 0.59 to 1.00 for 2.2CHCl₃. The data were also corrected for Lorentz and polarization effects.

The structures of 1.2CHCl₃ and 2.2CHCl₃ were solved by direct methods [35,36] and expanded using Fourier techniques [37]. All non-hydrogen atoms, apart from the C atoms of η^5 -C₅Me₅ groups in 1·2CHCl₃, were refined anisotropically, and hydrogen atoms were put at calculated positions without refinement. Some carbon atoms from the phenyl groups in $2 \cdot 2 \text{CHCl}_3$ were refined with relatively high anisotropic temperature factors. The crystal of 1 appears to contain two CHCl₃ solvent molecules in an asymmetric unit. One CHCl₃ solvent molecule was located clearly and the atom positions were refined isotropically. The other CHCl₃ was found to be disordered severely and we could locate a fully occupied C position and three Cl atom positions with a half occupancy. The crystal of 2 contains two CHCl₃ solvent molecules in an asymmetric unit. One was refined anisotropically. The carbon in the other CHCl₃ was found on the Fourier map and put on

the fixed position, and the three Cl atoms were refined isotropically. Neutral atom scattering factors were taken from Cromer and Waber [38], and anomalous dispersion effects were included in F_c [39]. Crystallographic calculations were carried out with a teXsan crystallographic software package of the Molecular Structure Corp. (1985 and 1992). Crystallographic data for 1.2CHCl₃ and 2.2CHCl₃ are summarized in Table 3.

Acknowledgements

J.-P. Lang thanks the Japan Society for the Promotion of Science (JSPS) for a post-doctoral fellowship. We are indebted to Dr Hiroyuki Kawaguchi for the X-ray structure analyses.

References

- I. Dance, K. Fisher, in: K.D. Karlin (Ed.), Progress in Inorganic Chemistry, vol. 41, Wiley-Interscience, New York, 1994, p. 637.
- [2] A. Müller, E. Diemann, R. Jostes, H. Bögge, Angew. Chem. Int. Ed. Engl. 20 (1981) 934.
- [3] R.H. Holm, Pure Appl. Chem. 67 (1995) 2117.
- [4] D. Coucouvanis, Acc. Chem. Res. 24 (1991) 1.
- [5] G. Christou, C.D. Garner, F.E. Mabbs, T.J. King, J. Chem. Soc. Chem. Commun. (1978) 740.
- [6] Y. Jeannin, F. Sécheresse, S. Bernes, F. Robert, Inorg. Chim. Acta 198 (1992) 493.
- [7] H.-W. Hou, X.-Q. Xin, S. Shi, Coord. Chem. Rev. 153 (1996) 25.
- [8] M.J. Stillman, C.F. Shaw III, K.T. Suzuki, Metallothioneins: Synthesis, Structure and Properties of Metalothioneins, Phytochelatins and Metal–Thiolate Complexes, VCH, Weinheim, Germany, 1992.
- [9] E.I. Stiefel, D. Coucouvanis, W.E. Newton, Molybdenum enzymes, Cofactors and Model Systems, ACS Symposium Series 535, American Chemical Society, Washington, DC, 1993.
- [10] E.I. Stiefel, K. Matsumoto, Transition Metal Sulfur Chemistry, Biological and Industrial Significance, ACS Symposium Series 653, American Chemical Society, Washington, DC, 1996.
- [11] R.R. Chianelli, T.A. Picoraro, T.R. Halbert, W.H. Pan, E.I. Stiefel, J. Catal. 86 (1984) 226.
- [12] T.B. Rauchfuss, in: S.J. Lippard (Ed.), Progress in Inorganic Chemistry, vol. 39, Wiley-Interscience, NY, 1991, p. 259.
- [13] M.D. Curtis, Appl. Organomet. Chem. 6 (1992) 429.
- [14] S. Shi, W. Ji, S.-H. Tang, J.-P. Lang, X.-Q. Xin, J. Am. Chem. Soc. 116 (1994) 3615.
- [15] C. Schlenker, J. Dumas, M. Greenblatt, S. van Smaalen, Physics and Chemistry of Low Dimensional Inorganic Conductors, Plenum Press, New York, 1996.
- [16] J.-P Lang, K. Tatsumi, H. Kawaguchi, J.-M. Lu, P. Ge, W. Ji, S. Shi, Inorg. Chem. 35 (1996) 7924.
- [17] D. Fenske, J. Ohmer, J. Hachgener, Angew. Chem. Int. Ed. Engl. 24 (1985) 993.
- [18] D. Fenske, J. Ohmer, Angew. Chem. Int. Ed. Engl. 26 (1987) 148.
- [19] J.G. Brennan, T. Siedrist, S.M. Stuezynski, M.L. Steigerwald, J. Am. Chem. Soc. 111 (1989) 9240.
- [20] H. Kawaguchi, K. Tatsumi, R.E. Cramer, Inorg. Chem. 35 (1996) 4391.

- [21] K. Tatsumi, Y. Inoue, A. Nakamura, R.E. Cramer, W. Van-Doorne, J.W. Gilje, J. Am. Chem. Soc. 111 (1989) 782.
- [22] K. Tatsumi, Y. Inoue, H. Kawaguchi, M. Kohsaka, A. Nakamura, R.E. Cramer, W. VanDoorne, G.J. Taogoshi, P.N. Richmann, Organometallics 12 (1993) 352.
- [23] H. Kawaguchi, K. Tatsumi, J. Am. Chem. Soc. 117 (1995) 3885.
- [24] H. Kawaguchi, K. Yamada, J. -P. Lang, K. Tatsumi, J. Am. Chem. Soc. 119 (1997) 10346.
- [25] K. Tatsumi, H. Kawaguchi, Y. Inoue, A. Nakamura, R.E. Cramer, J.A. Golen, Angew. Chem. Int. Ed. Engl. 32 (1993) 763.
- [26] J.-P. Lang, H. Kawaguchi, S. Ohnishi, K. Tatsumi, J. Chem. Soc. Chem. Commun. (1997) 405.
- [27] J.-P. Lang, H. Kawaguchi, K. Tatsumi, Inorg. Chem. 36 (1997) 6447.
- [28] J.-P. Lang, K. Tatsumi, Inorg. Chem. 37 (1998) 160.
- [29] J.-P. Lang, H. Kawaguchi, S. Ohnishi, K. Tatsumi, Inorg. Chim. Acta 283 (1998) 136.
- [30] J.-P. Lang, H. Kawaguchi, K. Tatsumi, J. Organomet. Chem. 569 (1998) 109.

- [31] J.-Q. Li, X.-Q. Xin, Z.-Y. Zhou, K.-B. Yu, J. Chem. Soc. Chem. Commun. (1991) 249.
- [32] Q. Huang, X.-T. Wu, Q.-M. Wang, T.-L. Sheng, J.-X. Lu, Inorg. Chem. 35 (1996) 893.
- [33] M. Asplund, S. Jagner, Acta Chem. Scand. 38A (1984) 135.
- [34] M. Asplund, S. Jagner, Acta Chem. Scand. 38A (1984) 725.
- [35] A. Altomare, M.C. Burla, M.C. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, SIR92, J. Appl. Cryst. 27 (1994) 435.
- [36] G.M. Sheldrick, SHELXS86, in: G.M. Sheldrick, C. Kruger and R. Goddard (Eds.), Crystallographic Computing 3, Oxford University Press, Oxford, England, 1985, p. 175.
- [37] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel, J.M.M. Smits, DIRDIF94, The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [38] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, vol. 4, Kynoch Press, Birmingham, UK, 1974.
- [39] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964) 781.